Sparse Principal Component Analysis via Variable Projection
نویسندگان
چکیده
Sparse principal component analysis (SPCA) has emerged as a powerful technique for modern data analysis. We discuss a robust and scalable algorithm for computing sparse principal component analysis. Specifically, we model SPCA as a matrix factorization problem with orthogonality constraints, and develop specialized optimization algorithms that partially minimize a subset of the variables (variable projection). The framework incorporates a wide variety of sparsity-inducing regularizers for SPCA. We also extend the variable projection approach to robust SPCA, for any robust loss that can be expressed as the Moreau envelope of a simple function, with the canonical example of the Huber loss. Finally, randomized methods for linear algebra are used to extend the approach to the large-scale (big data) setting. The proposed algorithms are demonstrated using both synthetic and real world data.
منابع مشابه
Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کامل9 Sparse NonGaussian Component Analysis ∗
Non-gaussian component analysis (NGCA) introduced in [24] offered a method for high dimensional data analysis allowing for identifying a low-dimensional non-Gaussian component of the whole distribution in an iterative and structure adaptive way. An important step of the NGCA procedure is identification of the non-Gaussian subspace using Principle Component Analysis (PCA) method. This article pr...
متن کاملSparse principal component analysis via random projections
We introduce a new method for sparse principal component analysis, based on the aggregation of eigenvector information from carefully-selected random projections of the sample covariance matrix. Unlike most alternative approaches, our algorithm is non-iterative, so is not vulnerable to a bad choice of initialisation. Our theory provides great detail on the statistical and computational trade-of...
متن کاملFace Recognition using Sparse Projection Axes
Recent advances in sparse coding and compressed sensing have paved the way for novel techniques in a variety of fields, including face recognition. Following this trend we present in this paper a feature extraction technique based on projection coefficients computed using a number of sparse projection axes. The feasibility of the technique is demonstrated in a series of face verification experi...
متن کاملInformation Projection and Approximate Inference for Structured Sparse Variables
Approximate inference via information projection has been recently introduced as a generalpurpose technique for efficient probabilistic inference given sparse variables. This manuscript goes beyond classical sparsity by proposing efficient algorithms for approximate inference via information projection that are applicable to any structure on the set of variables that admits enumeration using ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018